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Abstract
In randomized trials to prevent breast milk transmission of human immunodeficiency virus (HIV)
from mother to infant, investigators are often interested in assessing the effect of a treatment or
intervention on the cumulative risk of HIV infection by time (age) t in infants who are alive and
uninfected at a certain time point τ0 < t. Such comparisons are challenging for two reasons. First,
infants are typically randomized at birth (time 0 < τ0) such that comparisons between trial arms
among the subset of infants alive and uninfected at τ0 are subject to selection bias. Second, in
most mother-to-child transmission (MTCT) trials competing risks are often present, such as death
or cessation of breastfeeding prior to HIV infection. In this paper we present methods for
assessing the causal effect of a treatment on competing risk outcomes within principal strata. In
MTCT trials, the causal effect of interest is that of treatment on the risk of HIV infection by time t
> τ0 within the principal stratum of infants who would be alive and uninfected by τ0 regardless of
randomization assignment. Large sample non-parametric bounds and a semi-parametric sensitivity
analysis model are developed for drawing inference about this causal effect. A simulation study is
presented demonstrating that the proposed methods perform well in finite samples. The proposed
methods are applied to a large, recent MTCT trial.
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1. Introduction
Every year approximately 200,000 infants become infected with HIV through breastfeeding;
in the absence of treatment, half of these infants will die within two years of birth [1, 2]. In
clinical trials to prevent MTCT of HIV through breast milk, investigators are often
interested in comparing interventions conditional on the infant being alive and uninfected up
to a certain time point during the trial [3–6]. Specifically, when randomization occurs at
birth (time 0), a time point τ0 > 0 is often chosen prior to the beginning of the trial and only
randomized infants alive and uninfected at τ0 are considered for analysis. For example, in
the Breastfeeding, Antiretroviral, and Nutrition (BAN) study [3, 4] infants were randomized
at birth but the primary analysis included only infants HIV uninfected and alive at τ0 = 2
weeks. Infants infected prior to 2 weeks were excluded because these transmissions likely
occurred in utero or during labor and delivery, whereas the primary objective of the trial was
to assess the effects of interventions to prevent infection due to breast milk. Similar
exclusions were made in the primary analysis of the SWEN and PEPI trials [6, 7].
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There are two aspects of the analysis described above that are the focus of this paper. First,
an analysis comparing risk of HIV infection between trial arms among infants who are alive
and uninfected at time τ0 after randomization is subject to selection bias. One method to
protect against selection bias in this scenario entails principal stratification [8]. Principal
stratification uses the potential outcomes of a variable collected post-randomization to
define strata of individuals. In the MTCT trial setting, the principal stratum of interest is
infants who would be alive and uninfected by time τ0 under either treatment assignment.
Because principal stratum membership is not affected by treatment assignment, comparisons
between trial arms within a particular principal stratum are not subject to selection bias. For
a recent discussion of the strengths and weaknesses of principal stratification, see Pearl [9]
and subsequent responses such as VanderWeele [10].

The second aspect in the analysis of the effect of treatment on the risk of HIV infection in
MTCT trials is the presence of competing risks [11]. In particular, death or weaning prior to
HIV transmission are competing risks for HIV infection since these events (death, weaning)
can preclude HIV infection from occurring. Likewise, HIV infection precludes the
possibility of an HIV-free death or weaning prior to HIV infection. One analytical approach
that avoids the complication of competing risks is to use a composite endpoint, such as time
until HIV infection or death. Using a composite endpoint simplifies analysis and has the
advantage of providing a single measure of the overall effect of treatment. However, such an
analysis does not provide inference about whether the treatment is having an effect on the
risk of HIV infection, death, or both endpoints. Another common approach in the analysis of
MTCT trials is to treat infants experiencing HIV-free death as right censored, e.g., when
computing the Kaplan-Meier estimator of the cumulative probability of HIV infection (for
instance, see Figure 2a of Kumwenda et al. [6]). It is well known that computing the Kaplan-
Meier estimator by right censoring competing events does not in general yield a consistent
estimator of the cumulative risk of the event of interest [12, 13]; in the MTCT setting such
Kaplan-Meier estimators will tend to overestimate the risk of HIV infection when there is a
non-zero probability of death prior to HIV infection. A third approach, adopted in this paper,
is to estimate the cumulative incidence functions of each competing event, namely HIV,
death, and weaning. The resulting estimates have a straightforward interpretation as the
cumulative risk of each event in settings such as the trial where the other events may occur.
Contrasts is the estimated risks between trial arms can then be used to assess treatment
effects on each of the competing events.

Previous work on estimating treatment effects within principal strata has considered binary
outcomes (e.g., Hudgens and Halloran [14]), continuous outcomes (e.g., Gilbert et al. [15])
and survival outcomes (e.g., Hayden et al. [16] and Shepherd et al. [17]). In this paper we
develop methods for estimating treatment effects within principal strata for a survival
outcome in the presence of competing risks. In the absence of competing risks the developed
methods essentially reduce to those of Shepherd et al. [17]. The outline of the remainder of
the paper is as follows. In Section 2 notation and assumptions are discussed. In Section 3
inferential methods for the causal effect of interest are presented. The finite sample
performance of the methods are assessed in a simulation study in Section 4. These
simulations also illustrate how misleading inferences can arise if selection bias are ignored.
In Section 5 the methods are applied to investigate the effect of infant antiretroviral therapy
(ART) on the cumulative risk of HIV infection in the BAN trial. A brief discussion is given
in Section 6.

2. Notation and Assumptions
Suppose n individuals are randomly assigned one of two treatments, 0 or 1, at baseline (birth
or time 0). For i = 1, …, n, let Zi = 0 if subject i is assigned treatment 0 and Zi = 1 otherwise.
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Let n0 = Σ (1 − Zi) and n1 = Σ Zi, where here and throughout . Without loss of
generality, assume Zi = 0 corresponds to placebo or control, and Zi = 1 corresponds to active
treatment. In the BAN study analysis, Zi = 1 will refer to the infant ART arm and Zi = 0 will
refer to the control arm. Suppose the primary objective is to assess the effect of treatment on
the time Ti (from baseline) until some particular event occurs. Assume there are k possible
causes or types of events and let Ji denote the event type for individual i with Ji ∈ {1, …, k}.
In the BAN study there are k = 3 competing risks: HIV infection (Ji = 1), death prior to HIV
infection or weaning (Ji = 2), or cessation of breastfeeding prior to HIV infection (Ji = 3).

Suppose in the analysis of the effect of treatment Zi on (Ti, Ji) we would like to condition on
some binary post-randomization variable Si (taking on values 0 or 1) measured at some pre-
specified post-randomization time τ0 > 0. For instance, in the analysis of BAN it is desired
to assess the effect of treatment in infants alive and uninfected at time τ0; in this case we let
Si = 1 if an infant becomes infected or dies by τ0 and Si = 0 otherwise. Note for the BAN
example that Si = I(Ti ≤ τ0, Ji ≤ 2) where I(·) is the usual indicator function, however in the
methods developed below Si need not be defined in terms of Ti or Ji.

Define Ci to be a potential right censoring time and assume τ0 ≤ Ci, i.e., no individuals drop
out of the study prior to τ0 such that Si is always observed. Let τ1 denote the maximum
length of follow-up for the study such that any individual who has not had an event or
dropped out of the study by time τ1 is administratively censored at that time, i.e., Ci ≤ τ1.
Let Yi = min{Ti, Ci} and Δi = I(Yi = Ti). Due to censoring, instead of (Ti, Ci, Ji) we only
observe (Yi, JiΔi); i.e., Ti and Ji are observed if and only if individual i is not right censored.

Let Ti(z) be the potential survival time when assigned treatment z for z = 0,1 such that Ti =
(1 − Zi)Ti(0) + ZiTi(1). Define Ci(z), Si(z), and Ji(z) similarly. Assume the treatment
assignment of individual i does not affect the potential outcomes of other individuals (i.e.,
there is no interference) and there are not multiple forms of treatment, i.e., the stable unit
treatment value assumption (SUTVA) holds [18]. Let Wi = (Si(0), Si(1), Ti(0), Ti(1), Ji(0),
Ji(1), Ci(0), Ci(1)) denote the vector of potential outcomes and Oi = (Zi, Si, Yi, JiΔi) denote
the vector of observable random variables. Assume individuals in the study are a random
sample from a larger population such that W1, …, Wn and O1, …, On are iid copies of W
and O respectively.

Principal strata can be defined by sets of individuals with the same potential outcome pair
(Si(0) = s0, Si(1) = s1). Define the never infected (NI) principal stratum to be individuals
with Si(0) = Si(1) = 0, i.e., individuals who would be alive and uninfected at τ0 regardless of
treatment assignment. Similarly define the harmed stratum as those individuals with Si(0) =
0, Si(1) = 1; the protected stratum as those individuals with Si(0) = 1, Si(1) = 0; and the
doomed stratum as those individuals with Si(0) = Si(1) = 1. Motivated by MTCT studies of
HIV, we focus on drawing inference about causal effects in the NI principal stratum. For
example, in the BAN study we are interested in the principal stratum of infants who would
be alive and not infected with HIV by τ0 = 2 weeks under either randomization assignment.

In the presence of competing risks, a quantity of interest is the cumulative incidence
function (CIF) or subdistribution function of (T, J). Let F(t, j) = P(T ≤ t, J = j) denote the
CIF, i.e., the probability of having event j at or before time t. Define the causal estimand of

interest to be  for t ∈ [τ0, τ1] where

 for z = 0, 1. In words, CE(t, j) is the difference
in the probability of having an event of type j by time t for treatment 0 compared to
treatment 1 within the NI principal stratum. For example, in the BAN study (where j = 1
corresponds to HIV infection), CE(28, 1) is the difference in the probability of HIV

Long and Hudgens Page 3

Stat Med. Author manuscript; available in PMC 2013 November 30.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



infection by 28 weeks between the two study arms among infants who would be alive and
HIV negative by τ0 weeks regardless of treatment assignment. In the analysis of BAN,
CE(28, 1) was of particular interest because per protocol a primary endpoint of the trial was
HIV infection by 28 weeks [3].

To draw inference about CE(t, j) we make the following assumptions:

Assumption 2.1 Independent treatment assignment: Zi ⊥ Wi

Assumption 2.2 Monotonicity: Si(1) ≤ Si(0) for all i

Assumption 2.3 Independent censoring: Ci(z) ⊥ {Ti(z), Ji(z), Si(z)} for z = 0, 1

Assumption 2.1 is plausible in randomized clinical trials. Assumption 2.2 is a strong
assumption that must be considered carefully and is discussed further in Section 5 in the
context of the BAN study. Methods not requiring the monotonicity assumption are discussed
in Section 6. Assumption 2.3 is a common assumption when analyzing competing risks data.
In the infant ART and control arms of BAN, 15% of participants were administratively
censored at τ1 = 28 weeks and 12% were censored at earlier time points due to drop-out
from the study prior to week 28.

Under Assumptions 2.1 and 2.2, Zi = 0 and Si = 0 imply Si(0) = Si(1) = 0; i.e., individuals
who are alive and uninfected by τ0 when assigned control must be members of the NI
principal stratum. Letting F0(t, j) = Pr[Ti(0) ≤ t, Ji(0) = j|Si(0) = 0], it follows under

Assumptions 2.1 – 2.2 that , which is identifiable from the observable data

under Assumption 2.3. However  remains unidentifiable under Assumptions 2.1 –
2.3 because individuals who are alive and uninfected by τ0 when assigned treatment (Zi = 1)
are a mixture of individuals from the NI and protected principal strata. In particular,
following Gilbert et al. [15], one can show

(1)

where γ = Pr[Si(0) = 0|Si(1) = 0] is the probability an individual is uninfected under control
given they would be uninfected under treatment, F1(t, j) = Pr[Ti(1) ≤ t, Ji(1) = j|Si(1) = 0]

and .

To proceed, one can introduce an additional assumption about the selective effect of

conditioning on Si which renders  identifiable. For example, following Hudgens and
Halloran [14], large-sample upper and lower bounds can be obtained by considering extreme
selection bias models. The upper bound selection model is given by assuming either

 or , while the lower bound selection model is given by assuming

either  or . By (1), these models are equivalent to assuming either

(2)

or

(3)
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Estimating CE(t, j) under (2) or (3) is useful in bounding the estimate of the causal effect
above and beyond any possible selective effects induced by conditioning on Si = 0.

The true degree of selection bias may be considerably less than that assumed by (2) or (3).
Therefore, we consider a class of selection models that includes the extreme models above
as special cases. Through sensitivity analysis over the entire class (as in Robins et al. [19]
and Gilbert et al. [15]), the relationship between the assumed degree of selection bias and
inference about CE(t, j) can be explored. These selection models are semiparametric in the
sense that no additional restrictions are placed on the distribution of the observable random
variables O1, …, On but an unidentifiable parameter (βj in the model below) is used to
quantify the selection bias. One possible selection model is:

Assumption 2.4

(4)

The parameter βj equals the log odds ratio of having an event of
type j by time t under treatment assignment z = 1 in the NI principal
stratum versus the protected principal stratum. Note Assumption 2.4
allows for the log odds to differ across event types as indicated by
the subscript on β. Also note (4) is unverifiable since βj is not
identifiable from the observable data. For fixed βj, under

Assumptions 2.1 – 2.4  is identifiable from the
observable data and CE(t, j) can be estimated as described in
Section 3 below. The extreme models (2) and (3) can be viewed as
special cases of Assumption 2.4 as βj → ∞ and βj → −∞. We
refer to βj = 0 as the no selection bias model because in this case the
odds of having an event of type j by time t are the same in the NI
and protected principal strata. Sensitivity analysis of inference
about CE(t; j) can be conducted by letting βj range from −∞ to ∞.
Gains in power or precision may be achieved by restricting the
range of βj based on prior information about βj elicited from subject
matter experts [20, 21].

3. Inference
In this section we first consider nonparametric estimation of CE(t, j) under the extreme
selection models (2) and (3). Then inference for CE(t, j) under the semiparametric selection
model (4) given some value of βj is discussed in Section 3.2. The construction of uncertainty
intervals about CE(t, j) is considered in Section 3.3.

3.1. Nonparametric Estimation: Bounds

Under Assumptions 2.1 – 2.3 consistent estimators of  assuming (2) or (3) are given,
respectively, by

(5)

where

Long and Hudgens Page 5

Stat Med. Author manuscript; available in PMC 2013 November 30.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



and F̂1(t, j) is the Aalen-Johansen estimator [22] of F1(t, j) calculated using (Yi, JiΔi) for
individuals with Zi = 1 and Si = 0. It can be shown that γ̂ and F̂1(t, j) are nonparametric
maximum likelihood estimators (NPMLEs) of γ and F1(t, j). Thus the estimators in (5) can

be viewed as NPMLEs of . Because Assumptions 2.1 and 2.2 imply

, consistent estimators of CE(t, j) assuming either (2) or (3) are

 or , where F̂0(t, j) is the
Aalen-Johansen estimator of F0(t, j) calculated using (Yi, Ji Δi) for individuals with Zi = Si =

0. In the nomenclature of Vansteelandt et al. [23], the interval [ ] is an
estimated ignorance region of CE(t, j).

If 0 < γ < 1, then γ̂ is asymptotically normal. The Aalen-Johansen estimators F̂z(t, j), for z =
0, 1 are asymptotically normal assuming 0 < Fz(t; j) < 1 and certain regularity conditions

[24]. Therefore,  is asymptotically normal if, in addition to these conditions,

(6)

If (6) does not hold, then  and hence is not asymptotically normal. Under

conditions where  is asymptotically normal, a consistent estimator of the variance

of  is

(7)

where  is a consistent estimator of the variance of F̂1(t, j) (e.g., see Aalen et al.

[24], Section 3.4.5) and Nz = Σ I(Si = 0, Zi = z). Similarly  is asymptotically
normal if, in addition to the conditions above,

(8)

If (8) does not hold,  and hence is not asymptotically normal. If 
is asymptotically normal, the variance can be consistently estimated by

(9)

Derivations of (7) and (9) are given in the appendix. When (6) and (8) hold, pointwise
Wald-type confidence intervals for CE(t, j) can be constructed in the usual manner.
Alternatively, the bootstrap percentile method can be used for computing confidence

intervals of CE(t, j). If (6) and (8) do not hold, then  and ,
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i.e., the bounds are non-informative. Note that conditions (6) and (8) can be assessed based
on observed data by comparing γ̂ and F̂1(t, j).

3.2. Semiparametric Estimation

Under Assumptions 2.1 – 2.4, for fixed βj a semiparametric estimator of  can be
constructed by plugging F̂1(t, j) and γ̂ into equation (1) and then simultaneously solving (1)

and (4) for . This can be accomplished by expressing  as a function of βj

and  using (4), replacing  by this expression in (1), and finding the solution

to (1) using a one-dimensional line search. Define the solution as  and let the

corresponding estimator of the causal effect be . Without a

closed form for , confidence intervals of  and CE(t, j) for an assumed
value of βj can be constructed using the bootstrap percentile method; alternatively, Wald-

type confidence intervals can be constructed based on bootstrap estimates of 

and .

Note  and , i.e., the estimators
that arise from the extreme selection models (2) and (3) are special cases of the estimators
from the semiparametric bias model (4). Under the no selection model βj = 0,

, i.e., the causal effect is estimated by the difference in Aalen-
Johansen estimators from the two treatment groups as in a standard competing risks
analysis. In other words, assuming the no selection model gives rise to a naive or “net”
estimator [8] which simply compares subsets of the two randomization groups conditional
on being observed HIV free and alive at τ0.

3.3. Uncertainty Regions
The pointwise confidence intervals described in Sections 3.1 and 3.2 will contain CE(t, j)
with the stated coverage probability provided the correct value of βj is assumed. However,
the true value of βj is not identifiable from the observed data. Therefore, following
Vansteelandt et al. [23], it is useful to also construct a (1 − α)100% uncertainty interval
which contains CE(t, j) with probability 1 − α without conditioning on any assumption

about the value of βj. Under the assumptions given in Section 3.1 where  and

 are consistent and asymptotically normal, a large sample (1 − α)100% pointwise
uncertainty interval for CE(t, j) is given by

where  can be computed using equation (4.3) of Vansteelandt et al. [23],

 and

4. Simulation Study
Simulations were conducted to evaluate the performance of the methods described in
Section 3 for drawing inference about CE(t, j). Data were simulated based on the BAN study
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under five models: βj = −∞, −1, 0, 1, ∞ for fixed j. These five choices of βj correspond to
the two extreme selection models (βj = −∞, ∞), two intermediate selection models (βj = −1,
1), and the no selection bias model (βj = 0). The Gompertz distribution was used to simulate
competing risks data [25]. Under the Gompertz distribution the CIF can be expressed as F(t,
j) = 1 − exp [λj{1 − exp (αjt)}/αj] where {α1, …, αk, λ1, …, λk} are chosen such that

. For the simulation study k = 3 and the parameters {α1, α2,
α3, λ1, λ2, λ3} were selected such that F1(28, 1) = 0.02, F1(28, 2) = 0.02, F1(28, 3) = 0.70,

and . These probabilities correspond roughly to the estimated risk of HIV
infection (j = 1), death (j = 2) prior to HIV infection or weaning, and cessation of
breastfeeding prior to HIV infection (j = 3) at 28 weeks in the BAN study among infants
randomized to the infant ART arm who were HIV negative and alive at 2 weeks.

Simulations were conducted under two scenarios (for each of the five models). For the first
scenario we let γ = 0.9884, corresponding to the estimated value of γ from the BAN study.
In this scenario we considered estimating CE(28, 1), i.e., the effect of treatment on risk HIV
infection at 28 weeks. Note (6) and (8) hold in this scenario for t = 28 and j = 1 such that the
estimators of the bounds are asymptotically normal. Because γ = 0.9884 is near the
boundary value of 1, for the second scenario we let γ = 0.75. In order for (6) and (8) to hold
in the second scenario, we considered estimating CE(28, 3), i.e., the effect of treatment on
weaning at 28 weeks. For the first scenario simulations were conducted under the alternative
hypothesis CE(28, 1) = −0.05, i.e., the risk of HIV infection is lowered by 5% due to
treatment. For the second scenario simulations were conducted where CE(28, 3) = 0.05, i.e.,
women are more likely to breastfeed at 28 weeks when the infant receives ART. For each
model and each scenario, data sets of n = 1520 iid copies of W were simulated according to
the following steps. The description below is for the first scenario where j = 1 is the event of
interest; simulations were conducted analogously for the second scenario where j = 3 is the
event of interest.

Step 1 Si (1) was drawn from a Bernoulli(0.0458), where 0.0458 was the estimated
risk of infection or death at two weeks in the infant ART arm of BAN.

Step 2 If Si (1) = 1, then by monotonicity Si(0) = 1. In this case we let Ti(0) = Ji(0) =
Ti(1) = Ji(1) = * because the survival time and failure type for individuals
with Si = 1 are not used by any of the estimators of CE(t, j).

Step 3 If Si(1) = 0, then (Ti(1), Ji(1)) were generated according to the Gompertz
models described above. In particular, first Ji(1) was generated from a
multinomial distribution with cell probabilities 1 − exp(λj/αj) for j = 1, 2, 3.
Then Ti(1) was set equal to τ0 + Ui where Ui was randomly generated from
the conditional distribution Pr[Ti(1) ≤ t|Ji(1) = j] = F (t, j)/Pr[Ji(1) = j] using
the inverse probability transformation. Generating Ti(1) in this fashion
guarantees that Ti(1) > τ0 = 2 whenever Si(1) = 0.

Step 4 If Si(1) = 0, Si(0) was generated as follows. For β1 = −∞,

 where  is defined in general such that

. Note for the first scenario (8) holds

for t = 28 and j = 1, guaranteeing the existence of . For, β1 = −1, 0, 1, the

value of 

was found by solving (1) and (4) simultaneously, and then Si(0) ~ Bernoulli(pβ1) where
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. For β1 = ∞, Si(0) ~ Bernoulli(p∞) where p∞ = (1 − γ){1 − I(Ti(1) < 28, Ji(1) = 1)}/{1
− F1(28, 1)}. Note for the first scenario (6) holds for t = 28 and j = 1, implying 1 −γ < 1
− F1(28, 1) thus ensuring p∞ < 1.

Step 5 If Si(0) = 0, then we let Ji(0) = Ji(1). If Si(0) = 0 and Ji(0) = 1, then Ti(0) =
Ti(1)/ε, where ε was chosen such that CE(28, 1) = −0.05. If Si(0) = 0 and Ji(0)
≠ 1, then Ti(0) = Ti(1). If Si(0) = 1, then we set Ti(0) = Ji(0) = *.

Step 6 Ci(0) and Ci(1) were generated from exponential distributions with means 29
weeks and 18 weeks respectively.

Step 7 Zi was randomly assigned such that n1 = 852 and n0 = 668.

Step 8 GivenZi, we set Yi = min{Ti(Zi), Ci(Zi)}, Δi = I(Yi = Ti(Zi)), Ji = Ji(Zi), and
Si = Si(Zi).

These steps resulted in simulated data sets satisfying Assumptions 2.1 – 2.4 with CE(28, 1)

= −0.05 for the first scenario. For each data set simulated,  was computed for βj
= −∞, −1, 0, 1, −. Bootstrap percentile and Wald 95% confidence intervals as well as the
uncertainty intervals described in Section 3.3 were also computed for each simulated data
set, assumed value of β1, and estimator of CE(28, 1).

Table 1 reports the mean relative bias of  based on 10,000 simulated data sets
for both scenarios (γ = 0.9884, j = 1, and γ = 0.75, j = 3) and each model (βj = −∞, −1, 0, 1,

∞). The proposed estimator  is approximately unbiased when βj is correctly
specified; for incorrectly specified βj the relative bias can be quite large. For example, if β1
is (incorrectly) assumed to be zero, corresponding to the naive analysis that simply
compares infants HIV free and alive at two weeks from each study arm, when in fact β1 =

−∞, then the relative bias of  is 23%. This demonstrates how a naive analysis
that ignores the potential for selection bias can yield incorrect inference. This is
demonstrated further in the scenario where γ = 0.75, in which case misspecifying β3 leads to
even greater relative bias.

Table 2 shows the empirical coverage probabilities of 95% pointwise bootstrap confidence
intervals based on 500 bootstrap replications per simulated data set. When the correct βj is

specified, the confidence intervals associated with  have approximately 95%
coverage. Similar results were found using Wald confidence intervals (results not shown).
Because βj is not identifiable from the observable data, coverage of the uncertainty regions
is perhaps of more practical interest. For the 50,000 simulated data sets from the first
scenario (i.e., combining across the 10,000 data sets for each of the five values of βj), the
empirical coverage of the 95% pointwise uncertainty regions was 97%. Similarly for the
second scenario, the empirical coverage of the uncertainty intervals was 97%.

5. Application to BAN Study
The BAN study was a randomized clinical trial to assess interventions for the prevention of
breast milk transmission of HIV in 2369 HIV infected mothers and their infants in
Lilongwe, Malawi [3,4]. There were three arms in the BAN study: daily ART for the infant,
daily ART for the mother, or control. While the primary analysis of the study considered
comparisons of both ART arms to control, we will focus on comparing the infant ART and
control arms only. In March 2008 the data and safety monitoring board stopped the control
arm due to efficacy but recommended continued enrollment of mother/infant pairs into the
two active treatment arms. This led to an imbalance in the final number of infants
randomized to the three arms, with 852 infants in the infant ART arm and 668 infants in the
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control arm. In the infant ART arm there were 37 HIV infections and 2 deaths before τ0 = 2
weeks, while the control arm had 36 HIV infections and 2 infant deaths prior to 2 weeks.
Thus γ̂ = (630/668)/(813/852) = 0.9884, as in the first scenario of the simulations in Section
4. Among infants HIV free and alive at 2 weeks, in the infant ART (control) arm 12 (32)
became HIV infected, 588 (384) weaned prior to HIV infection, and 5 (6) died prior to HIV
infection or weaning by 28 weeks. Figure 1 shows the Aalen-Johansen estimates of the
cumulative risk of HIV, death prior to HIV infection or weaning, and cessation of
breastfeeding prior to HIV infection for infants who were alive and uninfected at 2 weeks as
in a standard analysis, i.e., assuming the no selection model βj = 0 holds for all j. Figure 1(a)
suggests a difference in the risk of HIV infection between the infant ART arm and the
control arm, however direct comparison between the arms is subject to selection bias.

Figure 2 shows the semiparametric sensitivity analysis described in Section 3.2. The plot

depicts  and pointwise 95% Wald confidence intervals for each value of β1
(using bootstrap variance estimates). Note for the infant ART arm F̂1(28, 1) = 0.0141,
suggesting (6) and (8) hold for t = 28 and j = 1. The estimated ignorance region for CE(28,
1) equals [−0.056, −0.044] and the estimated 95% uncertainty interval equals [−0.078,
−0.025]. This estimated uncertainty interval was computed using bootstrap variance
estimates; using the analytical variance estimates (7) and (9) yielded a slightly wider
uncertainty interval of [−0.084, −0.025]. In either case, because the uncertainty interval
excludes 0, we conclude there is evidence of a causal effect of infant ART on the cumulative
incidence of HIV at 28 weeks in the NI stratum. Moreover, without any assumptions about
the selection bias mechanism, we are 95% confident daily infant ART lowers the risk of
HIV infection at 28 weeks between 3% and 8%.

The veracity of these results relies on several key assumptions. While interference between
infants was not likely, SUTVA could have been violated by changes in the infant ART
regimen. Per protocol, if an infant on ART had an adverse event due to the study drug
(nevirapine), the ART was changed (to lamivudine) and the infant remained in the study.
Thus not all infants were on the same treatment for the duration of the study. Therefore, the
effect of ART being estimated can be viewed as an average causal effect over all
administered ARTs [26]. While this interpretation answers the hypothesis proposed for the
BAN study, it does not indicate which particular ART causes the greatest reduction in risk
of HIV infection. Assumption 2.1 seems reasonable because treatment was randomized.
While mothers were not blinded, they were counseled to breastfeed their infants regardless
of randomization assignment and self-reported frequency of exclusive breastfeeding was
comparable between study arms [4]. The BAN study principal investigator, Dr. Charles van
der Horst, indicated that monotonicity (Assumption 2.2) is reasonable (personal
communication). Dr. van der Horst conjectured that an infant could have an adverse reaction
to ART leading to increased susceptibility to HIV infection but he felt this was “highly
unlikely.” Monotonicity is also supported by the estimated risk of HIV infection or death at
two weeks being lower in the infant ART arm than in the control arm.

Finally, note that two of the three endpoints in BAN were interval censored. In particular,
the HIV infection times of the infants were interval censored, known only to be between the
last negative and first positive HIV tests. Similarly, the actual timing of weaning is known
only to be visits where the mother reported still breastfeeding and weaning. On the other
hand, the time of death was known exactly for all infants. Other analyses of the BAN data
have found that formally accounting for interval censoring almost always gives nearly the
same result as using the midpoint or right endpoint of the interval. This is not surprising
given the visits in the BAN study were fairly close together, typically two to four weeks
apart. In settings where the intervals are wider, midpoint or right endpoint imputation may
yield misleading results. Instead, a non-parametric estimator of F1(t, j) that allows for
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interval censored event times [27] can be employed in place of the Aalen-Johansen
estimator. Inference that formally accounts for interval censoring is challenging however,
owing to slow rates of convergence and non-standard limiting distributions of non-
parametric estimators (for continuous time models) [28, 29].

6. Discussion
The objective of many MTCT trials is to determine differences in the cumulative risk of
breastfeeding transmission of HIV between study arms conditional on infants being HIV
free and alive by some time point τ0 > 0. Here we have presented methods for evaluating the
effect of treatment on the cumulative risk of HIV within a principal stratum when death and
weaning are competing risks. Large sample non-parametric bounds and a semi-parametric
sensitivity analysis model were developed, and the methods were applied to the BAN study,
a large, recent MTCT trial. A simulation study was presented demonstrating that the
proposed methods perform well in finite samples similar to the BAN study. The simulations
also illustrated how analyses that ignore the potential for selection bias by simply
conditioning on being HIV free and alive at τ0 can give misleading results in settings similar
to the BAN study.

The analysis of the BAN study indicates infant ART reduces the risk of HIV infection by 28
weeks in infants who would be HIV free and alive at two weeks regardless of treatment
assignment. The proposed methods could be applied in other settings as well. For example,
BAN investigators (personal communication) were interested in comparing the risk of HIV
infection or death by 48 weeks conditional on infants being HIV free and alive at 28 weeks;
here τ0 = 28 weeks is further from time 0 and the potential for selection bias is even greater
than the analysis presented in Section 5. Another example is given by the Zambia Exclusive
Breastfeeding (ZEB) study, a randomized MTCT study conducted to evaluate whether
abrupt weaning at four months compared with continued breastfeeding increases survival of
children of HIV-infected mothers [30]. Randomization occurred at one month postpartum in
the ZEB study, however Kuhn et al. [30] presented a comparison of the randomized groups
conditional on infants being HIV free and breastfeeding at four months.

A key assumption of the methods described in this paper is monotonicity, which implies that
the treatment is no worse than control for any individual in terms of the intermediate
variable S. This assumption seems reasonable in the analysis of the BAN study presented in
Section 5, but in other settings it may be unrealistic. For example, monotonicity might be
considered dubious in an analysis comparing the two active arms of the BAN trial, i.e.,
maternal ART versus infant ART. In such settings methods that relax or do not require this
assumption would be needed. Following Zhang and Rubin [31], nonparametric bounds
analogous to those in Section 2 can be derived without assuming monotonicity. Specifically,

note that , where φ = Pr[Si(1) = 0|Si(0) = 0] and

. If γ and φ were identifiable, then bounds

for  can be constructed analogous to (2) and (3) and combined with bounds for

 to obtain the following bounds on CE(t, j):

(10)

and
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(11)

However, without the monotonicity assumption γ and φ are not identifiable. Let π =
Pr[Si(0) = 0, Si(1) = 1] and note that

and

are identifiable from the observed data for a fixed value of π. Thus, the lower bound of
CE(t, j) is found by minimizing (10) over π where max{0, Pr[Si(0) = 0] − Pr[Si(1) = 0]} ≤ π
≤ min{Pr[Si(0) = 0], Pr[Si(1) = 1]}. Likewise, the upper bound of CE(t, j) is found by
maximizing (11) over the same range of π. Sensitivity analysis could be performed by
adapting the methods of Shepherd et al. [32]. For instance, similar to Assumption 2.4, a

selection model for  could be assumed, such as:

Assumption 2.5:

(12)

Sensitivity analysis under Assumptions 2.1, 2.3, 2.4, and 2.5 would be performed by varying
π over max{0, Pr[Si(0) = 0] − Pr[Si(1) = 0]} ≤ π ≤ min{Pr[Si(0) = 0], Pr[Si(1) = 1]} and ηj,
βj each over (− ∞ , ∞). The resulting inference will be more precise if the ranges of π, ηj,
and βj can be further restricted based on prior information elicited from subject matter
experts.

For the MTCT research motivating this work, interest focused on the principal stratum of
infants HIV free and alive at τ0 under either treatment assignment. The methods developed
could also be applied to infants HIV infected and alive at τ0 under either treatment where T
might denote the time until death from various causes. Beyond MTCT trials, the methods
developed could be applied in other settings where inference about treatment effects within
principal strata is of interest (e.g., truncation-by-death or non-compliance) and the endpoint
is a time-to-event outcome subject to competing risks. Further research might entail
allowing the cumulative incidence functions to depend on baseline covariates (e.g., as in
Jeong and Fine [33]).
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7. Appendix

Asymptotic Variances of  and 

To derive the asymptotic variances of  and , we first derive the large
sample variance of γ̂. Under monotonicity, it is straightforward to show
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, implying γ̂ and (N0/n0)/(N1/n1) have the same limiting
distribution; therefore for the derivation below we can assume γ̂ = (N0/n0)/(N1/n1). For z, s
= 0, 1, define pzs = Σ I [Zi = z, Si = s]/n and πzs = Pr[Zi = z, Si = s], and let p = (p00, p01,
p10, p11)′ and π = (π00, π01, π10, π11)′. Define the function g as g(π) = π00(π10 + π11)/
{π10(π00 + π01)g and note that g(p) = γ̂ and g(π) = γ. Then by the multivariate central limit
theorem and the delta method (e.g., see Agresti 2002 [34], page 580),

 where  and
∇gzs = ∂g(π)/∂πzs. It follows from straightforward algebra that

 for which a consistent estimator is

.

For fixed t and j, let θtj = (F1(t, j); γ)′ and θ̂tj = (F̂1(t, j); γ̂)′. Under the conditions stated in
Section 3.1 of the main text, in particular assuming equation (6), it is straightforward to

show , implying  and F̂1(t, j)/γ̂ have the same limiting

distribution. Therefore we can assume  and, analogously, by equation

(8) of the main text we can assume . Define the vector of

functions h(x, y) = (x/y, {x − (1 − y)}/y)′ such that .
Because F̂1(t, j) and γ̂ are consistent and asymptotically normal, by the delta method

 where

and  is the asymptotic variance of  such that in large samples

. It follows that  and  are asymptotically normal
with variances

(13)

and

(14)

Replacing var {F̂1(t, j)}, γ, F1(t, j), and  in (A.1) and (A.2) with , γ̂, F̂1(t, j),

and  yields equations (7) and (9) from the main text.
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Figure 1.
Estimated cumulative incidence functions, F̂z (23, j), for the three events from the BAN
study: (a) HIV infection, (b) HIV-free death prior to weaning, and (c) cessation of
breastfeeding prior to HIV infection. For eachpanel, Zi = 0 (control) is represented by the
solid line (—) and Zi = 1 (infant ART) is represented by the dashed line (– – –).
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Figure 2.
Sensitivity analysis of the effect of infant ART on the cumulative incidence of HIV at 28

weeks for the BAN study. The solid line — denotes  and the dotted lines · · ·
denote pointwise 95% confidence intervals. The estimated non-parametric bounds
corresponding to β1 = −∞ and β1 = ∞ are given by ○.
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